“AD-A121 588 A PRINCIPLED DESIGN FOR AN INTEGRATED_ COMPUTATIONAL
ENVI ONHENT(U) HRSSHCHUSETTS INST OF TECH CRHBRIDGE LAB
FOR COMPUTER SCIENCE A A DIS SSH 12 J

UNCLASSIFIED HIT/LCS/TH 223 NBBB14-75-C-0661 F/G 9/2

2.8

El:rEEIEE
== oy
>R E

2 :
e

L =7 %
B i e

ErEERE
re
| 3
Ib
(=]

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963~ A

LABORATORY FOR
COMPUTER SCIENCE

AP, MASSACHUSETTS
INSTITUTE OF
i TECHNOLOGY

MIT/LCS/TM-223

ADA121508

A PRINCIPLED DESIGN

FOR AN INTEGRATED COMPUTATIONAL ENVIRONMENT

Andrea A. diSessa

July 1982

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

82 11 17 113

PR PR P} ». PR SO I R P : PP S S A .

P—

P
v

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

REPORT DOCUMENTATION PAGE BEP OB o T R
|. R!’ORT NUM‘EI . GOVY ACCESSION N°] 3. RECIPIENT'S CATALOG NUMBER
MIT/LCS/TM-223 [./7'-7)/4)2/ $I3—

4. TITLE (and Subtitle)
A Principled Design for an Integrated Computation-
al Environment.

§. TYPE OF REPORT & PERIOD COVERED

Technical Memo July 1982

6. PERFORMING ORG. REPORT NUMBER
MIT/LCS/TM-223

7. AUTHONR(s)

Andrea A. %Sgﬁ

8. CONTRACT OR GRANT NUMBER(s)

N00014-75-C0661

[9. PERFORMING ORGANIZATION NAME AND ADDRESS
M.I.T. Laboratory for Computer Science
545 Technology Square

Cambridge, Ma. 02139

o

10. PROGRAM ELEMENT. PROJEC}, TASK
AREA & WORK UNIT NUMBERS

[T& MONITORING AGENCY NAME & ADDRESS(I! different from Controlling Olfice)

11. CONTROLLING OFFICE NAME AND ADDRESS

12. REPORT DATE

DARPA VV July 1982
1400 Wilson Boulevard 13. NUMBER OF PAGES
Arlington, Va. 22217 41

Office of Naval Research
Department of the Navy
Information Systems Program

| 'Sa. DECLASSIFICATION/DOWNGRADING
SCHEDULE

Arlington, Va. 22217

1S. SECURITY CLASS. (of this report)

Unclassified

ey e
16. DISTRIBUTION STATEMENT (of this Report)

This document is approved for public sale and release, distribution unlimited

Unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, If different frem Repost)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverae slde Il necessary and identify by block number)

See back.

20. ABSTRACT (Continue en reverse side 1f necessary and identily by block mumber)

See back.

DD ,'on'ys 1473 coimion oF 1 nov 6813 OBsOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Bntered

SECYMTY CLASSIFICATION OF THIB P ASR(TRen Date Bnteved)
Rada A AR el e

1
3
.

A Principled Design

[for an Integrated Computational Environment

Andrea A. diSessa
July 12, 1982

Abstract

Barer s & computer anguape desighed 10 be the base of an nlegrased compitationsl
environment providing a broad array of functionality - from text editing 10 programming -- for naive
and novice users. R stands in e line of Lisp inapired languages (Lisp. Logo, Scheme), but differs
from these in achigving much of il understandability from pervasive use of a spatial metaphor
reinforced through sultsble graphics. This paper describes a set of lsamability and understandability
issues frst and then uses them 10 motivate design decisions made concemning Buxer end the
environment in which & is embedded.

KETWORDS: spatisl metaphor, user models, understsudability, computer language,

text editor, dats base lmmguage, integrated cowputatiomal emviroumest, novice
programming. .

This work was supported by the Advenced Ressarch Projects Agency of the Department of Delenss,
monitored by the Office of Naval Ressarch under contract NOOO14-75-C08S1.

SEC.AITY CLASSIPICATION OF THIS PAGE(hen Date Bntered)

OFFICIAL DISTRIBUTION LIST

Director

Defense Advanced Research Projects Agency
1400 Wilson Boulevard

Arlington, Virginia 22209

Attention: Program Management

Office of Naval Research
800 North Quincy Street
Arlington, Virginfa 22217

Attention: Marvin Denicoff, Code 437

Office of Naval Research

Resident Representative
Massachusetts Institute of Technology
Building E19-628

Cambridge, Mass. 02139

Attention: A. Forrester

Director
Maval Research Laboratory
Mashington, D.C. 20375

Attention: Code 2627

Defense Technical Information Center
Cameron Station
Arlington, Virginia 22314

Office of Naval Research
Branch Office/Boston
Building 114, Section D
666 Summer Street
Boston, Mass. 02210

National Science Foundation :
Office of Computing Activities
1800 6 Street, N.N.

¥ashington, D.C. 20550

Attention: Thomas Keenan, Program Director

2 copies

3 copies

1 copy

6 copies

12 copies

1 copy

2 copies

Co N T Y,

A Principled Design
for an Integrated Computational Environment

Andrea A. diSessa

Accession For

o —

July 12, 1982 NTTS GRAsT X
DTIC T+3 @
Unanncuneana 0

Justificn Vi]

—— e e

By _
. M
Distrirutiony

Availobility Codes

iAvai and/or
Dist Special

Abstract -B

/“’%’ Boxer is a computer language designed to be the base of an integrated computational

environment providing a broad array of functionality -- from text editing to programming -- for naive
and novice users. It stands in the line of Lisp inspired languages (Lisp, Logo, Scheme), but differs
from these in achieving much of its understandability from pervasive use of a spatial metaphor
reintorced through suitable graphics. This paper describes a set of learnability and understandability
issues first and then uses them to motivate design decisions made concerning Boxer and the
environment in which it is embedded. é‘*

KEYWORDS: spatial metaphor, user models, understandability, computer language,

text editor, data base language, integrated computational environment, novice

programming.

This work was supported by the Advanced Research Projects Agency of the Department of Defense,
monitored by the Office of Naval Research under contract NOOO14-75-C0661.

N G A A s o

1. Introduction

It is certain that in the future most computer users will be people who are nor-computer
:‘ specialists, people for whom the computer must be a useful tool for their own interests without

requiring inordinate computational sophistication or effort. Secretaries, financial analysts, scientists

3 of all kinds, but also teachers, students and trainees, hobbyists and homemakers will be among these
h users. We are convinced that most of these people will be best served by providing an integrated
environment which has broad functionality, not via a great number of special subsystems, but via

common facilities which allow specialization'if necessary, but accomplish basic tasks such as the

foltowing list with a uniform, easily understood computational scheme.

- Text editing, including structured filing and retrieving

™ |

- Using and moditying pre-written programs
- Writing programs {including text editing 'macros"’)
- Searching and manipulating data bases

- Producing grabhics-with a flexible, programmable graphics facility

Though we will not pursue the argument for integrated computational environments in detail here,
the dominant point is that even if naive and novice users need not deal with several of the above
functional categories, it is still clear they could often benefit from doing s0. Given that, there is an
advantage to any system in which learning any one functionality automatically carries competence
into other areas. In our view it is so obvious that such synergistic effects can be accomplished, that
the only surprising thing is that there do not yet exist any examples of integrated computational
environments suitable for naive and novice users. Instead, research has aimed largely at separate
systems for separate functions, apparently mainly because of the association of these areas with
different pre-computer technologies and because groups have narrowly modeled their own interest
on what functionality has traditionally found a place in individual “job categaries.” We refer the
reader to the Smalitalk, Lisp machine, PIE and Interlisp projects [Tessler 81, Weinreb and Moon
82, Goldstein and Bobrow 80, Teitelman et al 75] for previous work on integrated environments, work

which, with the exception of Smalltalk, has had fittle concern for unsophisticated users.

What igsues arise in the design of an integrated computational environment for naive and novice
users? One stands out above all others. That is the understandability and simplicity of such a system

as perceived by its user. While efficiency or power can serve as the primary measures for systems

intended for experts, learnability and understandability are paramount for the people we aim at. We
a must therefore try to understand the mental models people form of complex systems such as a

"‘ computational environment in order to design an effective one.
k

Unfortunately, cognitive science and psychology have not yet provided the well-elaborated theory
and empirical studies of understandability one would like to have before beginning a design exercise.
h Though there are beginnings [Gentner and Stevens 82, Rumelhart and Norman 81, Young 81], for the
i most part we are at the stage of having to announce principles just before applying them, and in fact,
to some extent explaining those principles through their application. This paper must be understood
as an attempt to begin to explore the principles of engineering understandability as much as it is to lay

}
’;‘ out a design for a particular system.

it is not entirely a disadvantage to have to work in this way, with theory so close to application. It is
not often that one gets to design a system from scratch so as to be understandable according to some
[set of principles. Other things we might try to make intelligible, physics and mathematics for exampie,

are much less malleable, less subject to invention and mutation than a computational system.

Newton's Laws do not allow tinkering in the way one can tinker with the appearance and workings of
computationai systems. So in this sense, engineering these systems can be a much more direct
embodiment of the learnability principles we propose, and offer more direct and rich feedback on the
principles themselves. The possibility of freely designing computational systems may well force and
motivate theories of understandability the same way the technology for fabricating steam engines

prompted the development of thermodynamics.

The first part of this paper sets out understandability principles for integrated computational
environments, largely by identifying paradigmatic classes of models users make of complex systems,
each with its own strengths and weaknesses. One of the main results of this will be that the central

notion of simplicity will take on a much more textured and complex character than might be the case

with less developed notions of what it is to understand. Fortunately, this complexity has returns in
highlighting the traueoffs one makes in designing a system to be understandable in one way or
£ another, tradeoffs which must be negotiated to effect a useful design. It also suggests the possibility
L_ (even necessity) of using different models for different purposes, or for a gradual shift in kind of model

employed as a user becomes more experienced.

The second half of the paper applies these principles to the design of a computer language, Boxer,

being developed by the Educational Computing Group in MIT's Laboratory for Computer Science as

the basis for an integrated computational environment. Boxer has been partially implemented, but to
simplify exposition and more clearly highlight the modeling issues, what is described here is neither
the same as implemented,‘nor precisely what we intend to implement. Readers interested in what has

been implemented are referred to [Neves 82).

The Boxer language stands in the line of Lisp insbired languages (Lisp, Logo, Scheme) with some
crucial distinctions. In particular, Boxer makes the user interface much more integral to the meaning

of the system. This allows the user’s stance toward the system to be one of *naive realism,” what you

see is what you have, and thus enhances communication of the mode! of the system. Boxer also
makes use of a pervasive spatial metaphor in which language structures and relations are expressed
by the spatial relations one sees on the screen. The intent is to tap well-developed spatial schemata
that humans already possess in order to facilitate modeling the computational environment. Rather
than serve as a specification of the language, the present paper is intended to show by example how

understandability considerations can play a significant role in the design process.

Caaaand,

' 4

TN T, N .

Anandbe . B Beidhone oo Mmoo B ome ko b L - -1

A A

PP MR- Lot

L4

- g |

PP

Dl a4

Bogm ae an o o 3o

2. Principles of Design

2.1 Structure and Function

The distinction between structure and function, long considered fundamental to the process of
design in any form, is particularly vital to the design of an integrated computational environment. The
distinction focuses on either characteristics of an object or action which are defining and
independent of specific use (structure) or on characteristics which have to do with specific use,
consequences or intent (function). The point is to separate descriptions according to whether the

implied descriptive frame universally applies (structure) or not (function).

One can contrast the structural aspects of a variable in a computer language which are given
primarily by setting and accessing protocols, with a variable's functions which might be described as
“a flag" or more generally, as a communications device.” Some other functional descriptions of a
variable which may or may not be applied according to context are “counter,” “data” or “input.” In
the last case, input, there is only partial structural overlap with a generic variable; the function “input”
requires some additional strubture, namely local scoping and flow-of-control organization to allow the
procedure to have its input bound when it executes. Yet, by and large, one treats inputs as variables.

The issue of partial structural overlap, which variables and inputs evidence, will be a recurring topic.

The structure/function distinction is particularly important to the design of a computational
environment because not onlly'the designer, but also the user must come to grips with tﬁe issues
involved. Much more than the user of a designed artifact such as a building, the user of a
computational system must understand how the system operates and how it achieves its goals in
order to make it do what he intends. In terms of function and structure one can understand the
obvious failure of the most naive attempts at integration -- namely, simply arranging for all separately
designed function areas to be accessible from each other. (We are ignoring another potential
difficulty of this tactic, that such mutual access must be trivial for the user.) The problem is that
structural elements in each area will differ because they are tuned to the functions of that particular
area, or worse, the structural elements may differ for no principled reason at all. Thus the syntax for
typing a command may be different “in the monitor’’ as compared to “in the programming language.”
Commands in a text editor may have no written representation at all for no particular reason except
that data objects (text) dramatically dominate procedural objects in that function domain. As aresult,

there is more to learn for the novice, and confusions are constantly caused by similar but not identical

structures. Just as much, one is deprived of the power of structures considered important in one area’

LA T‘;-

T ad Y

Qe ~ moa

IR A

TP

but not salient enough in the functionality of another to warrant implementation: Should one be
deprived of the power to write a new program built out of a few primitives in the text editor simply
because it's not part of the usual functional specification of an editor? !s instant action on keystroke

command entirely useless for a programming environment?

We identify two principle design heuristics for integrating different function areas so as to avoid
the above difficulties. First, design the underlying, general structures of the computational
environment in such a way that specific function can be built out of them. In this way we imagine that
one would often use structures not specifically tuned to some function -- or if specific functionality is
important, one would build it. Single keystroke actions, for example, could be the resuit of a general
control construct. Thus editing commands ordinarily executed with a keystroke would also have
written out names, follow the syntax of the programming fanguage and wouid be editable and
augmentable with any user-defined procedure. This example follows a pattern, “‘shallow structuring,”
that we think must become typical: Any furctionality that is important for the user to construct or
modify can only be a rather simple combination of basic structures. For naive and novice
programmers, that would be the limit of understandability and personalization. If the gap between

basic structures and usable functionality is large, it might as well be infinite.

The second design heuristic is to exploit the possibility of achieving some intended goal
functionality not by having any dedicated structure or even a simple combination of structures, but by
letting several aspects of thg environment take over some appropriate part of the goal. A simple
“*motherhood ' example is allowing the use of arbitrary, mnemonic names to aid documemation. A
more complex example is to help solve parsing problems not only with a simple syntax, but through

interactive parsing and prompting when an expression is typed in.

These two design principles aim at structural parsimony, “coliapsing” structures to a small,
common core. They are directed against what we call the hacker bug of implementing a structure for
each idertified functionality. By nature, integrated computational environments are systems in which
we cannot afford a one-to-one connection between structures and functions. Needless to say, this
applies within as well as across large-scale functional domains. Reducir.lg the number of structures
within programming in itseif is an important goal. Shallow structuring is the first of an important series

of refinements and constraints on the urge to structural simplicity.

ey "y

o rr":‘rv

2.2 Mental Models and Surrogates

One cannot approach the design of an understandable computational environment without saying
something about understanding. To this point we have relied on intuitive asseéssments of simplicity
such as “a system composed of a large number of similar but subtly different structures is hard to
learn and prompts mistakes and confusions.” While we believe these assessments, it is important to
begin to take steps beyond them. We must look more carefully at a hypothetical user's ''mentai

models’ of a system, that is, how a user understands in order to control the behavior of a system.

The words “mental modef” often conjure up the image of a sort of replacement machine located in
the mind on which one can run experiments and envision results without touching the actual
machine. Such coherent, runnable conceptions have been called surrogate models by Young
[Young 82).' For example, one typically models a “push-down list” as a physical stack on which
objects may be piled and removed. A push-down list, of course, does not behave identically to a pile
of objects (e.g. ‘‘overflow’ versus gravitational instability), but the image of a pile does allow one to

simulate its important behavior.

The notion of a su}rogate model is as much functional as structural. It is the intended use of the
model as much as any possible generic élassiﬁcation on the basis of mental operations which defines
it. A surrogate model is intended to capture the causal mechanism in such a way as to offer
explanation and correct predictions in uniform terms. As such, it is the ultimate arbiter (for the user)
for tracing entailments forward or backward in time. (The béhavior of the machine itself could serve
this role, except that that behavior in itself provides no parsimony of understanding.) Surrogate
models are almost always explicit and taught, and one would typically see them invoked by a tutor
when a novice's expectations have gone awry. Two of the most elaborate surrogate models that are
attempis to encompass a large part of the operation of a computer language are the actor model of
Smalltalk and the elaborated versions of Papert's little man model of Logo done by the Edinburgh
Logo Project [du Bo'ulay et al 81]. One possible surrogate model of a language would be a
specification of its implementation, though this is hopelessly inadequate pedagogically for technically

unsophisticated users. .

Though it is not inherent in the concept, surrogate models are prone to certain problems as a way

of giving users effective control of a system.

1Our use of the term differs subtly from Young's, though not enough to warrant another label. Some of our discussion below
follows this same reference as well.

r v

R i

o~

.wwvvv 2ot s

|

- Learnability: Since they aim at being uniform views of rather complex systems, they
themselves tend to be complex. When pushed to cover all behaviors of a system, they
often lose their air of coherence with ad hoc elements for dealing with loose ends. More
particularly, because of their compact, tightly interconnected nature, surrogate models
require a good deal of learning before they can be applied to even simple, everyday
events. Incremental learnability is sacrificed for the sake of uniformity and completeness.

- Styles of use: Surrogate models, though very good for debugging (that is in cases when
one has a given input to the system and needs to afford the time to, step-by-step, trace
down an unexpected behavior), are typically rather slow and time consuming to “run.”
Routine, relatively fluid interaction with the system cannot be expected to occur as a
direct result of acquiring a surrogate model. At the very least. degrees of automation,
“compiiing”’ frequently used operations, etc., occur. Moreover, surrogate models can be
unfortunately far from the task of inventing a way to effect some intended result. For
example, in planning situations the specification of the goal out of which the plan must
arise is typically roughly outlined and almost always functional, referring to a context
frame different from the surrogate. In contrast, the perspective of a surrogate model with
its aim of comprehensive prediction is clearly structural.? Brown and de Kieer [de Kieer
and Brown 81] argue convincingly that a model aimed at unfailing and comprehensiva
explanation must be structural and not functional. Here, some examples of the gap
between functional and structural specification must suffice.

Suppose one wants to communicate some information from one procedure to another. One thinks
of using a variable not because one knows how a variabie works, but because one knows a variable
can and often is intended to have the etfect of “'information transmission.” In PASCAL one often uses
the PRINTLN command because one wants the side eflect of moving to the next line, not because one
wants to print a null line. Not édrprisingly, novices must usuaily be taught this ““hack™; it is a' potential
function not easilv seen in the meaning Aof the command. An example more germane to later
discussion is th2 fact that either a variable or a function might perform precisely the same role in an
expression, to provide a needed value. The considerations which dictate whether one chooses to
implement that role with one or the other structure may be totally invisible to the semantics the

programmer attributes to the symbol used.?

More generally, ' arning a command entails learning important side effects of that command which

can be exploited to attain particular ends as well as learning a context-free specification of the

The retalion t etween structural descriptions and surrogate models is interesting. It is probably true that “structural® is only
wall-defined if an explicit surrogate, or more generally, a “well-developed theory" is referenced.

3For this reascn it seems troublesome, at the least an unnecessary burden on the programmer. if the syntax of the language
requires distincti e visuat form for structures that can have the same funchon. We generalize this argument later to argue for
‘syntay ir which siructure is minimally intrugive.

hean RS o sk o o
]

PPy

e

W

“meaning’’ of the command. Teleology, plan fragments (such as the counter paradigm for the use of
a variable) -- not to mention hacks -- are not germane to a surrogate model, but are clecrly part of

understanding a system.)

We have already mentioned that surrogate models are often complex, especially for powerful,
high-level languages. A design heuristic, probably originated in response to this protiem, is to
construct a language deliberately to have a simple surrogate model by selecting the out ine of the
model and building structure and syntax around it in such a way as not to lose any ‘‘nacessary”
functionalities. Smalltalk has followed this line, beginning with the root actor and messac ¢ passing
model. While we do not mean to broadiy criticize this heuristic, (we shall use i, albeit carefully) the
above considerations suggest some dangers in this route, even if it achieves the basic goa! of a
simple surrogate. Specifically. the construction of a broad class of functionalities out of a tiny set of
structural elements is almost bound to involve great cleverness. While systems designers may be very
fond of these hacks, the novice user is generally less appreciative. One must expect many of these to
require specific tutoring, in which case the advantage of a small number of universal structLres over a
larger set more specifically tuned to important functicnalities is not clear. indeed, depend ng on the
naturainess of the hacks (more on naturalness below), the simpler surrogate may be at a distinct

disadvantage.

In summary, we add a new heuristic to our arsenal: In addition to the obviously problematic hacker
bug of providing a structure for every function, considerations of understandability warn against the
opposite extreme, the formalist bug of providing a sparse set of primitives out of which t> build afl
functions. If typical learning of the language will require a number of special functional iricks, the
advantage of a very sparse structural vocabulary with correspondingly simple surrogate model is
much reduced. An alternative strategy is to focus on some relatively small set of special cases
corresponding to basic functionalities and to tune the language's structures to those cases. indeed,
we think learning prototypical cases in functional terms will almost always precede understanding a
surrogate in any case. Though we must still expect coherence of the special cases to be important
(and will explain how we expect our proposals to achieve coherence), we will follow this line to avoid

the formalist bug.

2.3 Functional Models
Some readers may, understandably, be uneasy at our criticism of achieving integration with a

uniform, simple surrogate model. What can we offer in replacement? To begin, we sugges:ed above

YTV T

C

10

the technique of linking structures more closely with functions which are already understood or are
easy to learn. Following earlier remarks, in making such functional models we must (1) take care not
to have too large a set of these nor (2) tune them tightly to specific *‘traditional’’ functional areas, nor
(3) foreclose the possibility of an effective surrogate in the cases that is likely to be needed, iike
debugging. The pattern of learning, then, would be that a few, important and generally useful aspects

of the language, say, particular constructs, would be learned as solutions to specific problems.

These points deserve elaboration. Young [Young 81] details what he describes as a task-action
mapping mocel of algebraic calculators as follows. By "'typing in a problem,” say 3 + 5, in a way which
maps trivially to doing the same thing with paper and pencil, onc has set up a context where what
should happen is obvious: One wants the answer. Pressing = does precisely what one wants in that
context, namely, gives ‘the answer.” “"Doing what one wants” in a prototypical situation is quite a

sufficient model of the system for many purposes.

Models acquired in this way obviously have soime defects. Unlike surrogate models, one cannot
expect the ge neral behavior of the system to be evident in a specific context. For example, the state of
the system if one were to type 1+ + is not constrained by the prototype *'problem insertion’ model of
+ . It one expected novices to need ta interpret situations equivalent to 1+ + (such as understanding
some prewritten code) or if the functionality achieved through 1+ + were important and not
conveniently achieved through other means, one should certainly beware relying on this functional
method of giving users a model of the keystroke +. Functional ﬁMels provide restricted
understanding. The descriptive frame will typically be weak with respect to structural aspects of the
situation, e.g. the internal state of the calculator after pressing 1+ . This knowledge is important for
debugging ana similar tasks, for example, to know what to do to correct a mistaken + when - was
intended. it is also important in that if a structure is to serve several functions, a single functiona!
projection may not be sufficient to allow the user to understand or generate the other functional
descriptions. Indeed, ‘because of the semantic constraints within the functional descriptive frame,
cartain comuinations of structures (1 + + is an example) will lie entirely outside the capabilities of the

frame to describe.

In & general purpose computational environiment, one cannot expect to model a very large part of
ibe svstem with functional models based purely on common knowledge or previously understood

madia.* But the same strategy can be applied after some initial experience) bootstrap on learned

&

“The Yerox Star [Smith ef af 82] uses ordinary office procedure itself as a model for understanding that system. This is an
impressive <xpansion of modeling on the basis of previously understood media over modeling a calculator on paj:er and pencil
calcuiation But it falls short of being a general purpose computational environment.

capabilities. We expect beginners to start by learning relatively trivial actions which will allcw them to

inspect, generate and use simple programs. Many of the structures of the language will be

r]

understandable as solutions to specific problems such as creating and using in new contests objects

T

whaose form and function are already understood.

Functional models provide only a view of part of the system, and that only with respect to a non-

universal frame of analysis. Obviously, one needs a repertoire of them; the notion of a single model is

il ~ REMEE A

tenable structurally (surrogate) but not functionally. With respect to the strengths of a surrgate, this
fragmenting of understanding shows weaknesses. On the other hand, from the point Jf view of
ﬁ incremental learnability, teleolegy and other important aspects of understanding, functior al models

4 can be superior precisely because of their contextual specificity.

Lr 2.4 Distributed Models

Knowing a friend is not much like having a surrogate or even a collection of functional inodels. A
moment’s thought about the learning process reveals why. Learning experiences are more typically
discovering actions and reactions of the friend in many different contexts, very few of which have

simple, evident or generalizable functional frames. In this section we describe a kind ct episodic

learning similar to that described for a calcuiator above, but within which the acquired model is due to
a spectrum of partial understandings -- not to a single functional frame. We think such learning and

the models derived from it are vital o understanding complex systems, even if they appea- at first to

be even less tractable as a basis for design.

This example comes from a rather early stage in learning Logo. Beginners almost always start by

driving the Logo turtie (a graphics cursor) around with commands like FORWARD 100 (meaning move

forward 100 steps). While structurally one could describe this as a function (in the Lisp or
] mathematical sense)5 with its input, it seems certain elementary school students must be irterpreting

FORWARD 100 essentially as an abbreviation for an English sentence like ““‘go forward 100 units.”

v The need for input, therefore, is semantic and situation specific, not structural.

When students are taught to define their own procedures, the metaphor of teaching the computer
how to do a new thing is invoked. One types TO SQUARE :SIDELENGTH followed by the list of

commands defining square, as in the following recursive example.

5The ambiguity of language between function in this sense and function, the partner to structure, is troulilesome, but

unavoidable.

TR ——Y

12

TO SQUARE :SIDELENGTH
FORWARD :SIDELENGTH
RIGHT 80 .
SQUARE :SIDELENGTH
END

In structural terms, TO SQUARE :SIDELENGTH is the syntax for defining a function, but it is easy
to see the syntax is intended to continue the interpretation of a command as a verb. The English
infinite form is frequently used definitionally, a function that the Logo procedure definition syntax
aims at inheriting. Furthermore, input specification follows the same form as the FORWARD 100
sentence, which is also acceptable English, e.g. 'to go far.” Abstractly, one sees a problem (teaching
a new verb) and a solution (TO SQUARE ...), all of which relies heavily on a knowledge frame, English,

that is rather systematically used to help Logo beginners.'5

But not all aspects of the syntax for definition are meaningful within the linguistic perspective or
within the functional frame of “teaching a new word.” In particular, the use of : deserves attention. In
L.og»n the : (pronounced “'dots"”) denote the value of a variable and is included in the definition syntax
to parallel and reinforce the pattern of invocation of procedures with variables as inputs, e.g.
FORWARD :SIDELENGTH, or more particularly, to parallel recursive call format, e.g. SQUARE
:SIDELENG.TH in the finai line of the above procedure. These consonances are subtle, but

worthwhile, aad do not interfere with the linguistic frame.

It is important to note that the : marker aé part of definition syntax has support other than from
visually matching the pattern of typical invocation; namely, it has a simple rationalization -- to
distinguish variable inputs from the procedure namne, and to distinguish them in the form one most
frequently uses a variable, getting its value. Thus the whole syntax package is more easily adopted
and used for several distinct reasons having to do with difierent channels of coherence with the rest
of the system, channels such as a broad.interpretive frame like “English,” common-sense reasoning

(in this case, rationalization, *: is used to distinguish input variables from the name of the

GT he root meaning of Logo is Greek “word;" this use of natural language in making Logo learnable was quite deliberate on
the designers’ part. Incidently, assimilating procedure definition to the natural language stiucture takes advantage of the tact
that, in English, ithe imiperative form (SQUARE) and the infinitive form (TO SQUARE) use the same word, as well as of the fact
that it is not outlandish in English 1o use a noun fike “square’" as a verb. That this is not the case in many other languages has
proved problemetical in devising eftective transiations of Logo.

ERRS sy aas o e

gt

vy

T

13

procedure™), or even visual pattern matching.’

The learnability of the procedure definition process in Logo is due to its naturalness as a solution
to & particular problem when interpreted in a number of frames, each of which partially e plains the
solution. We refer to models accumulated from multiple, partial explanations as distributed models.8

It is easy to emphasize how far these depart from what one would expect if a simple surrogate
accounted for all of learnability, if coherence were measured only in structural terms. Logo is a
descendant of Lisp, and as a consequence, function application is the standard contro! or3anization
for procedures with inputs. Assimitation to that standard would require TO to be a function and
SQUARE and SIDELENGTH to be inputs. Thus one should write something like TO "SQUARE
"SIDELENGTH followed by the body of the procedure as a list of lists (the lines of the procedure
dehmiic) et only is there loss of template matching to a typical use of the defined object, but there
is no problem-specific rationalization for the syntactic markers. The ditferent functions o° SQUARE
and SIDELENGTH are not marked, and TO is separated by syntactic marks from its close “'English’
partner, SQUARE. Beginners would need to memorize the syntax with essentially no semantic or
experiential support. Of course, for the computer experienced, the syntax would have a grzat deal of
meaning having to do mainly with the advantages of uniform, context independent struciures. But

that doesn't help the naive and novice user.

There are limits to the usefuiness of such situation-specific distributed models. rocedure
definition is special in several respects. The problem context is easily undérstood in naive terms. As
important, the problem solution is frequently enough used that the model will not be dengerously
undermined by other experiences such as the structure of ordinary function application which implies
that PRINT SIN 5 does not print “SIN 5" and that PRINT HELLO gives an error if HELLO is not a
defined procedure. Only on such occasions (well-defined context, rich and frequent suppoart for use
of the context dependent "solution’’) can one expect specific semantics to reliably dominate uniform

syntax through the entire course of coming to understand a system.

It goes without saying that one must consider long term effects ol particular functional and

7Novices will often respond directly to queries about the definition syntax with such rationalizations: “SIDELENGTH is a
variable,"” or "It's just like when you write SQUARE SIDELENGTH," (recursive call). implementations of Logo which changed
the syntax 1o TO SQUARE SIDELENGTH have prompted complaints from novices whose rationalizations were violated and, it
seemed to us, prompted more mistakes from beginners.

8The notion of a distributed model is derived from ideas we have developed abaut understanding compiex systems in other
domains. See [diSessa 82a, diSessa 82b).

rp——

g

S

Pop——

— e A g - P —

14

distributed models. Some will remain and be integrated as ‘‘special case” models. Visual pattern
matching is an example.- Some will fade away naturally and be replaced where appropriate by
surrogate models. No learner believes Logo is English for very long. But we are aware that globally

destructive misconcepiions may be fostered as well as "profitable misconceptions.”

The force of this example is due mainly to the fact that defining a procedure is an extremely early
activity in learning Logo. Itis a great defect in past language design that even the grossest features of
learning sequence are ignored in considering “simplicity.”” In our proposal, coarse features of a

learning sequence will be at least implicit and sometimes explicit.

In summary, a structurally simple language (one with a simple surrogate model) is in principle ideal
for post hoc explanation, debugging and prediction, but can fail to be generally useful by not being
incrementally learnable and not sufficiently close to the functional terms in which problems to be
solved are phrased. Our discussion has not only mapped out these typical failure modes but also has
proposed building less coherent, but still effective models based on function or on compatibilty with a
collection of partially explanatory frames. A typical pattern is that the few initial structures which a
beginner encaunters have the following properties: 1. They provide sufficiently broad functionality
through simple variation on the prototype to support many activities. 2. Those structures will need to
be understandable on the basis of naive functional and distributed models. 3. The initial models
should lead unproblematically, through teaching and experience, to the appreciation of a moderately

simple, relatively complete surrogate model.

Having sketched in general terms a set of issues we see as important to understandability, we turn
now to more detailed assessments based on particular knowledge, '‘'model-building material,” users
might have or lack. Given the general strategic decisions made for Boxer, we shall find that static
organization lends itself to a good dea! of structural collapse to a small core. But for dynamic aspects
of computation, other strategies are necessary, including proliferating structures to allow tighter

functional match.

YTy

PP

RS

Y

T

Lafmn yaanddssan o0 d

cae e e e -y

15

3. A Proposed Frame for Integration

The visual medium has_served a more and more important role at the interface between man and
machine, particularly since the advent of bitmap displays. But surprisingly little use has been made of
the medium to develop and support user models rather than simply to expand the bandwidth of the
interface in terms of amount of data available at any given time or to facilitate the operation of the
system for already comprehending users. In contrast to pop-up menus and iconic mnemonics, we
would like to use the video screen to attack the fundamental problem of understandability of the basic

organization and operation of the computational environment.

The means we intend to use is a comprehensive spatial metaphor. In particulur, spatial
organization will have strong semantic content: Elements of the environment will have or e places,
and their visible spatial relationships will have structural meaning. Perhaps most important, all
computational objects will be created, represented and manipulated in essentially the same way, and
the user will be able to pretend that the objects are their visual representation. What we want the user
to see on the screen is, as close as we can arrange it, the computational system itself rather than a
muftiply-filtered or side-effect dominated view of it (e.g. a window occurs in some pface and size
because that was what was available on the screen when the window was created). Tating naive
realism so seriously, in fact, separates this proposal most strongly from all previous computer
language designs. Even those designers who are willing t¢ divert resources like the disp'ay screen
from “tuned-to-a-t" functicnality to understandability have almost universally opted for user
interfaces which act as buffers or facades to hide system complexities from the user rather than to

search for a simplicity which could be shown.?

There are two driving forces behind use of a spatial metaphor. The first is that humans have a
great deal of knowledge and a broad collection of skills tor dealing with space. Humans happen to
live in a world which is profoundly geometric in the sense that objects and places are salient and
tightly interrelated. The dominant mode .of interaction with the world is to move objects (including
oneself as an extremely important special case) around into different configurations rather than, for
example, to mutate the objects or even pass messages between abstract, placeless entities. '

Things might be different if our dominant sense were not vision, but instead, hearing, which is

9See. for example, [Innocent 82) or [Goldberg and Robson 79).

10" is not that we are not impressed with the power of actor based languages, but the amount of work the acior metaphar

does in promoting understandability. besides providing a uniform syntax, 1s problematic.

16

dominated by messages.

The second driving force behind use of a spatial metaphor is the character of spatial knowledge,
which we find extremely compatible with the structure of Lisp-like languages, of which Scheme i3 the
closest to what we need. It appears to us that in many ways we are simply uniformizing, extending
and concretizing many fragments of a typical user's understanding of these languages. This should

essentially guarantee that what we make will be a usable, practical language.

3.1 Static Structures and Functions

3.1.1 The Box

Essentially all static objects and configurations will be derived from a single object called a box. A
box appears on the screen as a rectangular region with the interior containing the box's contents,
which is dominantly text. The root meaning of a box is a “thing’ and its contents are its parts. The
choice of text as the main surface form stems from the Logo idea to explicitly import some natural
language familiarity into computation and from the fact that text manipulation is itself a goal of an
integrated ervironment. 'Boxer is “editor-top-level.” One always talks to the system through the
editor. As details emerge, it will become apparent how text manipulation and program writing are

intended to b2 mutually supportive activities. Either can serve as a good introduction to the other.

Boxes may contain subboxes, either named or not. Boxes are logically as well as visually two-
dimensional arrays in the sense that they are a sequence of lines, each of which is a sequence of

words (Lisp atoms) or boxes. Names of boxes must also be words.

| This is a box whose contents is the text

| you are reading.

| Here is an unnamed box: —--==---meemmemo—eeeoeoooo
| | This box 1is the |
| | last item on its Vine. |
!

|

I

|

!

Her2 is a named subbox whose internal detail has
been suppressed: BOX2--------
|771117]

- - ———

- — - S = = e S M S e T e SR e e e e e e e e Pt S D e e e AR e e e e A

Figure 3-1: A box with contained boxes.

17

The abstract structure of a box, a hierarchical two-dimensional array, is enough to build almost
everything needed in BOXER without violating shallow structuring. We intend one of a beginning
user’s first activities to be wandering around in the system itseif, inspecting it. This can be
accomplished simply by moving a cursor around (our prototype system, built on a Lisp machine
[Greenblatt et al 80], uses a mouse) and the keystroke commands ENTER and EXIT. ENTER, when
the cursor has been placed in a subbox, visually causes that box to be the top levet of display and
EXIT “pops” up to the next higher level. Creating, deleting and moving boxes are simple functions of
the editor.

3.1.2 Boxes as Procedures

Procedures appear as boxes. (See figure below.) Subprocedures may be written directly into
procedures as subboxes giving the functionality of vigible Hlock structuring. These subprocedures
may be named for mnemonic purposes, as can ary box. This is especially useful when one wishes to
suppress detail for clarity. In many of the exaririns to fellow we use turtle graphics and =ssentially
the syntax of Logo.11 In particular, Logo is line :-ented rather than Lisp’s expression orientation.
Not only is this line orientation consistent wirr. the basic box’s visual organization, but it encourages a
kind of modularity that is important for non-professional programmers; the effect of anything typed in

a line is confined to that line.

SQUARE == ======== ==

| RIGHT 90 |

I I
I I
| | FORWARD 100 | |
I I
! I

Figure 3-2: A box represents a procedure.

To make alt aspects of a procedure concrete and spatially accessible, in particular local data such
as inputs, we need an additional structuring of a box. In fact, having usable data local to a box but
other than its contents is so generally useful we declare that every box has a focal library located in its
upper right hand corner. This contains definitions of any local symbols which may be used interior to
the box and in any box contained (recursively) in that box. Containment implies inheritance. The
details of scoping will be treated in section 3.2. The procedure below has an input, NUMBER, and
draws a polygon of NUMBER sides and sidelength LENGTH.

11We have not settied the issue of syntax but Logo is a close approximation to our current best guess.

P D PP R .

[.

REPEAT NUMBER =--------=-------- S |
| FORWARD LENGTH | |
| RIGHT 360/NUMBER | |

I

- ——— - > - . - =

Figure 3-3: The local library contains definitions generally useful in the box.

The value of inputs and local variables will be inspectable in the library during debugging. A value
written into the contents of an input will serve as a delault value. 1t is important that since the local
state of a procedure represented in its library may contain procedures and data as well as inputs, one
may place such items at more appropriate levels of the hierarchy of a procedure-subprocedure
system than at the highest, *‘global” level. This makes systems of procedures easier to inspect and
understand than the unorganized piles of Lisp. Since subprocedures may appear in place, single-

purpose subprocedures need never appear in any library at all.

Though the local library is special in the sense that it is not part of the contents of the box in the
ordinary way (e.g. it is not executed as part of the procedure), it is structured, inspectable and
editable exactly as all other boxes are. Detail may be suppressed. One is free to arrange the contents
of a local library spatially so that the most important procedures occur near the top and so that related
procedures appear together.v The library’s semantic as container of generally useful information

about the box makes it a natural place for annctation, documentation and other help.

3.1.3 Boxes as Data Objects

The boxes NUMBER and LENGTH above funclion as variables, and generally boxes will serve to
define data as well as procedural objects. In contrast to traditional languages which have a number
of different structures for handling compound data (strings. arrays, lists, records, etc.) box structure
is intended to be universal. This structural universality, as with lists in Lisp, should be a source of
great power and simplicity. To achieve the full benefit, boxes must be first-class objects. Boxes

already have names, and we will deal with details of other aspects of first class status later.

Lisp's universal compound structure suffers some of the same problems as a simple surrogate --
namely, list structure is too far from important classes of functionality to be easily appropriated and

used. We think the two-dimensional, line-oriented form of a box is better adapted to a broad range of

. -

———

T T

MR -'u:.v"

19

functions than a simple' ordered sequence. For example, a box can simply contain some text in the
usual sense. And we will not tamper with the box structure per se in tuning even more to spzcific data
functionalities. but instead we will add a number of different access routes to parts cf the structure
which are aimed toward particularly important classes of functionality. We expect these to be learned

as solutions to particular problems as the user advances.

One of the most important of compound data functionalities is the ability to deal with named
subparts easily. Most Lisps have property lists that are often used for this purpose. Boxes have the
capability implicit in the fact that any box or subbox may be tagged with a name. All one needs is an
appropriate syntax for selection. We shall use an index notation here; V.X specifies the X sudpart of V,
and for assignment MAKE V.X 1 means set V.X to 1 in the same way any variable is set; MAKE
NUMBER 5 sets NUMBER's contents to 5. One can specify any number of levels, e.g. VECTORS.V.X.

Figure 3-4: A vector with labeled subparts.

It is nearly as important to have “address’ names for elements of compound data objects in cases
where individual names are inconvenient or require too much overhead. Correspondingly, we will
nave an alternate vocabulary for specifying parts of a box based on locati'on. It would be extremely
natural to use array indices into the two-dimensional structure (rows and columns) of a box. One
would also like to reference rows because of their important meaning (visually, in procedures, etc.)
and elements by their sequence number (reading, as text, left to right, top to bottom), e.g., ROW 1
ABOX or ITEM N BBOX.

3.1.4 Boxes as Environments

Boxes and a local library provide a functionality that has been much neglected in computer
languages, that of an environment. One can arrange a place in which a particular set of procedures
and data are available for a user to employ in an unconstrained way. The construction of
environments has proved to be an invaluable method for teachers to provide students with domains to
explore [Abelson and diSessa 81] or with generally useful “tool boxes.” A box used as an
environment has some advantages over programs or even workspaces whicfi might otherwise serve

the same purposes. In contrast to a program with specific 1.O., box-environments save the

m

20

programmer from creating (and the user from needing to learn) a special interface. Environments
allow flexibility in terms of simple programming on top of what's given, easily accepting a very general
class of user-initiated modifications. Like a workspace, an environment simplifies the constructic n of
what might otherwise be a complex, monolithic program by allowing one to build and try out sr:ailer
pieces. But an environment in Boxer is both more general (e.g. one can nest environments) and
better integrated (e.g. constructible and editable in the same way data and procedures are).
Considering that nested boxes offer a choice of where in the hierarchy to place needed objects,
Boxer environments are aiso more controliable and seif-annotating. Lisp and Logo workspaces often
get so cluttered with “helping’’ procedures that the ones intended to be used at top-level are not at all

apparent.

“Time modularity,” how one creates natural and stable boundaries in time between sets of
activities, is one functionality of the file-workspace organization that is not taken over by box
structure. The simplest Boxer structure to handle this is the ability to save and restore named state
vers:ons of any box. Note this gives much finer control over time modularity than workspace-files.
One can save versions of a procedure within an environment. With this simple method, coordinated
changes in an environment must be handled at a level of the hierarchy which is sufficiently high to

contain all such changes.

At still larger scales than environments, boxes can serve to organize an entire personal
computationzl environment. One needs nothing more for a hierarchical file system. At the most
global level, a box we might label UNIVERSE. the local library can contain documentation on all the
system primit.ves. The contents of UNIVERSE would contain the top level view of the organization the
user chiooses for his entire environment. This use of box structure duplicates most of tic functionality
of one of the most successful aspect of the Smalltalk programming environment, the Browse:,

allowing leisurely perusal of the entire system.

Boxer's advantaqe in this is that it is all Browser! There is no need for any dedicated structures
with extra werk in learning to construct or modify the “shape’ of the system.12 The long time-scale,
gintal peisonal organizational capabilities of Boxer are one of its most important advances over

previous procramming languages.

12Tnc- Browser in Smalltalk is not part of the programming language, but part of the user interface. This means, among
other things, thet much Browser structuie 1s special to the Browser, not easily moditiable by users. and the parts that are
m~; Liable must be attectled through specially learned procedures. It is also true that part of the system organization seen in
the Brows.cr exists only for the Browser anr does not reflect system semantics in a fundamental way.

Y

e 2 2a e o0 e e

21

UNTVERSE == === = == = == = = = e o o e e e e e
I I
| PAPERS---=-=-==--- SCHOOLWORK === = ====== ===~ |
| [1771711711) | MATH-=----- |
| e N
[S [
I I |
| | PHYSICS---- | |
I I 1771 1 |
I | ===)
fF mmmeee e [
! |
| GAMES------- MAIL------- |
| |77777] 177747) |
I [

Figure 3-5: Box structure can organize the whole computational
environment.

Some of the flexibility and ease of learning in Boxer comes from the fact that the process of
constructing a box is separated from the static representation of the box once made. This allows
users to choose method of construction and modification. One may type a procedure or assemble it
out of previously written text (for example, out of commands typed in an environment in the course of
experimentation), then move it to the local library; one may type a procedure directly into the local
library; or one can have some procedure (TO) do that work by side effect. Identitying the process of
constructing a procedure with its static representation, as with Logo's TO or Lisp’s defun, is a
relatively clean hack, but one we consider a remnant of teletype interaction, where object creation by
side effect is a necessity. Especially for environments and large data objects, the concrete access
provided by our spatial/naive realist approach is natural and functionally superior to creation by side

effect and mutation by magic.

3.1.5 Kinds of Boxes

We have been discussing a very wide class of functionalities deriving from a single structure.
Though we would like this to be precisely true, our implementation and other considerations have
convinced us that boxes need to be labeled as to type, and have slightly different behavior
accordingly. Most of this has to do with control (next section). Briefly, the kinds of boxes will be
something like the following list: We will have data (variable) and doit (procedurs) boxes.
Environments should be labeled to help an exploring user locate the levels of the system intended for
use in that way and to keep one from the meaningless act of executing an environment. For several

reasons, boxes which contain only text deserve a label and special behavior. One would almost

—

Y

22

certainly want slightly different behavior for the text editing facilities (such as sentence and paragraph
orientation and automatic justification). Special status for text allows one to use it in the midst of a
procedure as annotation without danger of it being executed. Finally, we will want graphics boxes

which are saved as bitmap images.

It should be clear how much of the structural backbone of a computational environment can be
supplied in concrete form by a two-dimensional hierarchical array -- the box. We are convinced that
the strong identification of “things’’ with *‘places,” and "organization’ with ‘'spatial relationship’ (in
particular, containment implies inheritance) provides a firm foundation for easy incremental
learnability of the system through inspection and through a uniform method of interpreting, moditying
and expanding what one sees. Nonetheless, these identifications are a very strong constraint on
system organization and possible interpretations of “running a program’ (to be discussed below).
There are very cogent arguments that simple hierarchies are not optimal in, for example, scoping
rules, though the sense of optimal is usually phrased in terms of reliability and flexibility -- not in terms
of cur chief concern, understandability. A context in which we do accept the force of these
arguments is the “user interface.” In Boxer what one sees on the screen, how one interprets it and
how one manipulates it is' dominated, if not entirely appropriated by a uniform semantic and method
of manipulation. One sees the system. On the other hand what one wants to see on the screen at any
given time might be things which are related in some way other than with respect to their system
organization. While running a program in some environment, one might wish to view the changing
contents of some distant data box. Or one might want to be looking at some part of the system while
conatructing another part, say constructing a program in analogy with another from a different

context. Window systems were invented partially to serve this kind of function.

To meet this need and a few others we have been experimenting with a single structure which
provides some of this functionality but which we consider minimally subversive of the system
semantic. It is callec a port and has most of the properties of a box. It appears as a rectangular
region. though spe -ially marked, can be named and is constructed and erased in the same way that a
box is. Butits meuning is a passway to another part of the system. What one sees in a port is a part of
the system located in another place. Thus one can ingpect and even change remote objects. In
general, one can pretend that another part of the system is in the place of viewing without changing
the ‘ real’’ organization of the system. The primary difference between a port and a window is that the
port self is spatially located in the system hierarchy, not attached to the screen. A port appearing in

a data stricture indicates the object contained is shared in basically the Lisp sense. The difference

¥
g

Al Gt ANEE s At mas ae o

.y

TV

23

between Boxer sharing and Lisp sharing is that any object really belongs to (is contained in) a unique
other object and can only be “used" in other places. In the section below we will give some examples

of functionalities other than “'screen organization' that can be appropriated by the port,

In terms of understandability, we believe Boxer fares weil as far as it's static organization is
concerned. There is a small structural core of spatiaily organized textual objects, and the main
associated functionalities do not appear to make radical changes, either semantically or visually, to
that core. Even the variations needed to provide specific functionality are accomplished by means of
a weak sort of typing, based on what we expect users to find natural functional categories,
procedures (things which do something), dala, text and graphics. There are other ways of achieving
functional variation of the core structures, for example, by adding syntax to specify use instead of
types. or using modular, special-duty parts of a box (such as “doit”" or ““data’’ parts), but types appear
simplest. To be sure, the ties between initially perceived tunctionality and these typ3s will be
joosened as the behaviors of these different boxes come to be better understood in context-invariant
terms, but this is precisely the right thing to hope for when functional models are used. The real test,
naturally, is empirical in terms of effective, long-term use of the system. We expect the results will
bear not only on the judgments we have made about the feasibility of expecting users to a>propriate
the models outlined, but also they should bear non-trivially on the sketch of mental model building for

systems of this sort which has served as a design heuristic.

3.2 Dynamic Structures and Functions

Now we turn to dynamic structure and 'function, the issue of control and change in the system.
When one thinks of control in a computer language, typically what comes to mind is iteration and
conditional structures like REPEAT <number of times> <things to repeat>, and IF <condition> THEN
<action)>. These can be dismissed here easily. While we are aware of some difficulties in modeling
these, we do not think the problems are as serious as many others. And it is also true that we do not
have much to add to what has already been said about them. So Boxer will simply appropriate some
set of these which do not differ greatly from those available in Logo or even Pascal. Instead, we think
the deep issues have to do with what a procedure does when executed, what it means to access and

set a variable.

24

3.2.1 Reference

A useful ron-computer context for introducing these issues is reference in natural Ianguage.13
Humans have an extremély elaborate set of mechanisms for determining and verifying the reference
of any utterance. The striking fact about this is that these mechanisms are almost totally invisible. in
retelling a simple story “the man who ..."” is apt to be replace by “Joe'"’ or whoever is understood on
the basis of contextual information to be the man referred to. If there was an ambiguity of reference,
the usual case is that, unless it was noticed at the time, that ambiguity will be unretrievable -- how one
established [oe to be the referent is not long stored, if it is ever recognized. In a similar way,
elementary school students will respond to the joke: Antidisestablishmentarianism. Bet you can't
spell that. “T ' “H" “A"” “T"'! But they are very unlikely to be able to describe or productively use the
shift in reference of *'that.” The cues which prompt type/token or use/mention distinctions in classes
of reference are not well understood by linguists, let alone vy “common folk.” Even the fact of such
distinctions i3 not available to most people. In short, establishing reference, though a complex

process, is perceived as though it involved totally transparent pointers to referents.

The problem for computer languages is clear. Efficient reference mechanisms (to date) have been
extremely simple, some version of lookup based on large scale syntactic rules and/or type indexing.
Lisp as an extreme case does a lookup on the basis of a universal syntactic form. Such schemes
have understandability problems: They are not sensitive to the contexts that users will spontaneously
apply, nor wilt a naive user be able to comprehend the clevernesses needed to make the context-free

mechanisms find the appropriate reference.

Logo took an apparently schizophrenic approach to the problem. On the one hand, it granted
special status, tc functions like ERASE (clear a procedure from workspace), PRINTOUT and even TO
so that one writes TO SQUARE rather than TO "SQUARE, to simplify this semantically clea:
reference.' On the other hand Logo chose to leave the distinction between function and variable
iookup to the user, specifying variable lookup with : as in :X, Apparently the rationale was that the

tunctional clusses sariable” and “procedure’ are sufficiently distinct on naive criteria to “allow”

! ’Refeience 1 the context of computer languages is usually restricted to discussions about distinctions like call by name

vercus call by vilue. Readers assuming that context should be aware that the discussion here involves a much broader
censtin g of the issues invoived.
*4A mentionad earher, Iteral reference mode. specified by quote. would be necessary f TO followed usual function
oAt e for g input. Also, we are concentrating on inputs here because the wnpetrative (English) intecpretation of
fuechon names s ratner successtul at providing a model tor the reterence (canying out an action) of the first element of most
| ¢go command strings

LEZMES AE A0M 4 AREES A aut i rng e o

25

(read ‘“require”) users to be responsible for the distinction. In fact, experience has shown this to be

relatively unproblematic. Kinds-of-things distinctions of this sort seem to be rather natural.

What has proved more problematic is that : in Logo truly denotes a structural reference
mechanism and not a kind-of-thing as the functional distinction procedure/variable might imply. The
problem is that assigning a variable a value involves two kinds of reference, a “named object” type
(like ERASE <named object>) to specify which object is being set, and a *‘value" type to specify the
new value. To simulate these out of its structures (which are largely inherited from Lisp and tuned to
function application) Logo writes MAKE "X :Y (X gets Y's value), even though X and Y are both
variables.'® Experience suggests that learnability is problematic; the variable assignmen: syntax is
not as susceptible to episodic learning based on germane rationalizations as one might have hoped.
Thus it appears to be a burden without significant advantage for beginning users who cannot be
expected to see the structural significance of the markers and must rationalize on purely functional
grounds -- “:denotes a variable, except in MAKE,” the latter part of which is wiithout any

generalizable import.17

In fairness, there are things to be said for the syntax: (1) MAKE is then a function in tha ordinary
sense, which uses value relerence for each of its inputs. (2) Because of this, variations o* standard
usage are relatively easy to achieve as in MAKE PROCEDURE.WHICH.COMPUTES.A.NAME or MAKE
:VARIABLE.SET.TO.A.NAME. (3) A judgment was made that it is not only possible to teach the
name/thing distinction, but that this could be a valuable gain from learnin.g the language. We have
already argued that (1) is a consideration for advanced users, not beginners, and (2) is as well:
Computed names are almost never useful for novices. Not only that, but novices find them strange
and remarkable when they do encounter them. Even if the flexibility is there, that does not mean it will
be seen or spontaneously used (formalist bug). One can have more sympathy for (3) except that it
makes little sense to complicate very early use of a language with issues that will eventua'ly arise in

other contexts anyway. In general our heuristic with Boxer is to simplify the lives of early users, even

15As an example, some beginners seeing inputs in procedure definitions for the first time evidently rationalize the : to mean
input in a kind-of-thing sense. Then they type SQUARE :100 tollowing that assumption. Good rationalizations, like visual
pattern matching in procedure definition syntax/invocation, do not spread to inappropriate contexts like this.

16This assignment syniax is a little like the el" = -1 of Logo in that it contains nearly all the important things in the world
(namely, the three main reference types, function-procedure, literal and variable) to produce a simple effect, variable
assignment. .

17Aﬁother problematic rationalization is to think that the two character string "X is the name of the variable and :X is its
value. A more profitable rationalization is that : denote a "“value of'’ operation, which would lead one to expect that ::X should
give the valtue of the variable-name accessed by :X. Some implementations of Logo have supported this.

o

ppeTpy———p

-~

e

e

26

if it means complicating slightly the lives of experts.

Finally, one could argu'e that a syntax which hides the difference between kinds of references is
bound to be confusing. But in the first place, note that if our earlier claim is true, that refc . ce
mechanisms are generally invisible, the user will experience both references in MAKE X Y as simple
references. Second, while the literal marker might be rationalized to represent named-object
reference, in fact, it represents only a mechanism of achieving that reference. (Although it is typical of
that kind of reference, quotes are used for other purposes as well) As well, this is not a
rationalization likely to be made by beginners. More to the point, there is an important semantic
component of the reference associated with MAKE not captured by the literal reference; by MAKE "X
{whatever>, one does not mean to replace the literal symbol X by some value. X must be understood
to be a variable which happens in this instance to be exhibiting the *'setable” half of its “‘set and get"
protccol, independent of what mechanisms and syntax cause that to happen. If a user understands
that, there seems little point in a non-specific syntactic reminder, quote.18 Indeed, later we will

proi.ose a semantic reminder in the form of a prompt, which has more attractive features.

Rather than the radical step of abandoning any form of uniform input protocol, we propose the
following two-fold strategy. (1) First we broaden the context sensitivities of the language. accepting
the assumption that most commands in the language carry an alimost unique semantically determined
“natural’” reterence mechanism which we simulate with appropriate but syntactically invisible
variations in lookup. (More detail on this assumption comes later.) So we would wnte MAKE X Y,
even though the structural reference mechanisms for the symbols X and Y are different. The second
arm of our strategy follows from the observation that this only postpones the issue, which will
certainly arise s naive users stray farther from patterned imitation of prototypes and wish to program
more complex operations such as setting variables with computed names, etc. (2) We would therefore
like to ease the transition to structural understanding of reference mechanisms. To do this we
propose (2a) to improve the understandability of the underlying reference mechanisms by developing
better surrogate m -Jels for them, and (2b) to improve debugging aids to the point where even if a

surrogate model fuils (most likely by not being used!) the error is easy to locate. In particular, we wish

18ln this light, consider the proposal made earlier, that V.X should denote the X subpart of V. This is intended to allow users
tothindk o V.(Cas a named object which exhibits variable bebavior. Thus in most contexts V X s an appropriate replacement
ior the contents of V.X. and in the case of MAKE V.X <whatever> one gets the “'setiing” behavior of this kind of named object.
i 2 user undersiands what . means, it should be no concern of his that ordinary structural reference mechanisms must be
arrgmented so that V X can be interpreted properly and not as a character string which appears literally as the label of some
box.

Wp—"

27

to implement a method of watching a program in action ta spot the error.'® Debugging, of course, is
important in its own right for a host of other reasons. But perhaps mos! important, the visuil method
we've chosen to implemént will aid the acquisition of the intended models as weli as simply the
catching of bugs. We expect episodes of watching the behavior of the system to lead to arich set of
raticnalizations and other partial understandings important to incremental learnability. We elaborate

these points starting with 2a. underlyina surrogate models. on which the others depend.

3.2.2 A Surrogate Model for Boxer
The key ideas in producing a surrogate for Boxer are to start with reference mechanisms linked
with kinds of objects, and to produce meaningful and visualizable (hence also depictable)

intermediate states in the execution proc:ess.20

We mentioned that the distinction between variable and procedure, obviously natural to computer
languages, is clear enough in naive terms to be adopted as a fundamental. Hence, Boxer has data
and procedure boxes. A data box's function is to contain data in literal form. As such, we have
collapsed the two structures of literal reference and variable into one. A data box appearing in place

(e.g.. in a procedure) marks the contents as literally referenced.

(data>

Figure 3-6: A data box marks literal reference.

The surrogate model for evaluating an expression involving a data box referenced by name
involves the process of retrieving a copy of the data box from the most immediate superior box whose
tocal library contains a box by that name. Then, execution proceeds as if the data had been written in
place. Lookup and copy for a procedure is identical, but the execution stage is recursive, i.e., will in
general involve copying and executing eléments of the contents of the procedure. In short, this “copy

and execute' model involves optional copy (in case of reference by name) followed by execution,

19Ron Baeker [Baeker 75] and Henry Lieberman (personal communication) have implemented systems with this

functionality

2OS.ee [Lieberman 82}, which discusses the importance of representing intermediate states.

\ 2 are o e o

ey o

.-

28

which is recursive in the case of a procedure, terminating at the action of language primitives.21

Perhaps the strongest argument for this surrogate model of the dynamics of Boxer is its
visualizability. Copying a procedure or data box in some location is concretely realizable ir. *he
overall Boxer spatiat frame. We imagine a stepper as part of Boxer's debugging facilities in which one
sees this copying of procedures on the screen, building the dynamic stack, and sees the replacement
of a name reference to a variable by its value. It is important to realize that the hierarchical lookup
scheme adopted as standard for Boxer along with the copy and execute surrogate causes dynamic
scoping to be the rule for free variables, i.e., ones used in a procedure but not contained in that

procedure’s local library (which is copied with the procedure).

Such a stepper would reinforce, if not teach, the underlying surrogate model. One would expect
watching simple programs executing to be a part of naive users’ early introduction to the system. One
could pause to inspect the calling hierarchy and the state of local variables (including inputs) at any
stage. The Logo “little man model” becomes concrete. In addition to stepping, such inspection
wouid be extremely useful after an error occurs. We imagine that in addition to an error message, one

could enter (via a port down to the level of the error) and inspect the stack. 2

it is not ha-d to extend this surrogate to ports. For this we use the tunctional characterization of a
port as imitating the présence of a box which actually exists in some distant part of the system. Thus
control is passed to that distant place, in which execution proceeds in ah entirely normal manner,
except any result is passed back to the calling environment by virtue of being “visible in the port.”
One can retrieve and set variables in non-local environments and use procedures which have need of
a different environment. In the example below, executing PORT1 will set the variable A in PLACE2

which contairs the target of the port.23

The semantics of copying a port is unproblematic; the behavior of a copy is the same as if one had

written the port direc.tly in place. So one can even use ports by name. Dynamically as well as

21) . . . "

A difterence between a surrogate and “what really happens' is clear here, no respectabie implementation would literally

Jnsuch copying. it is only important that the user be able to pretend that that's what's happening.
v
22 . -

Those are r.ot new functionalities to programming systems. Smalitalk and various Lisp implementations allow one to
inspect the stack. However, the advance in Boxer is that the mode of inspection is identical to the concrete mode even
i ginners use to inspect any part of the system, and the meaning of what one sees is a direct embodiment of the fundamental
¢ynamie surrogate cf the system.

23, . . . T

we now cunsider it more likely that a port should be only a flavoring of reference type which indicates remole

environment, not a reference type in itself. Thus ports will have to be marked explicitly dataport or doitport.

han o

——— —— e v N - B me: arae o o

PLACE1~-=-======mmoocmnoonnen :

©
o
p--
-
-
]
1
t
3
(]
1
i
)
]
[}
]
]
]

PLACE2--=======m==mmmm=mmmm=omacaaao

Figure 3-7: Ports provide access to other environments for dynamic
purposes such as setting a variable. Here the expression MAKE A5
resides in PLACE?2, but is visible (and could be executed from)
PLACETL.
statically, ports give a mechanism for breaking the strict hierarchy of box structure, and we consider it

a minimal and natural extension.

it is important to note that, though their dynamic surrogate expressed in words is not complicated,
ports are more difficult fo watch than normally copied and executed objects.24 This is the main reason

we consider ports to be advanced elements in Boxer.

3.2.3 Inputs

We return to the issue of varied and invisible reference mechanisms for inputs. . (Recall,
procedures and variables when referenced by name are not syntactically distinguished.) The idea is
to let the procedure establish context, how the text which constitutes an input is to be treated. We
propose three flavors of input which parallel each of the three ways (data, procedure and port)
execution treats the contents of a box. The procedure flavor evaluates the input text according to the
standard Boxer rules and instalis the result in a data box of the appropriate name which is located in
the inputting procedure's local library. This matches closely the universal Lisp and Logo input
structure. The second kind of input treats the input text as data and transfers it unevaluated into the
input’s box in the local library (which is still a data box). This is Lisp's fexpr, except the “flavoring” is
attached to the particular input, not to the function (Boxer procedure) as a whole. This is the right
kind of input for messages and other textual data. One need not bother with literal markings of any

sort.

24" the difficulty is not obvious, we will consider it in more detail in section 3.3. Incidentally, one of the “'cute” things which
can be done with ports is programming without names, where every reference is “wired in" with port connectors.

Y S T Y Ty

30

The final kind of input uses port semantics, and therefore will probably be used only by advanced
users. The input box is a port to the text of the input. This is the appropriate way to input procedures,
as it avoids certain funarg broblems [Steele and Sussman 78a). For example, if BAR is taken as a nort
input to a procedure FOO, the environment available to BAR when it is executed in FOO is ihie
environment where the symbol BAR was typed, outside of FOO. If BAR is a port, naturally the

environment available to it would be the target of the port.

As far as learning sequence goes, it should be expected that users will use the procedure ('‘value™
makes a better mnemonic) flavor for their own definitions for quite a while. Numbers predominate as
inputs to early, user-defined procedures. Value inputs will be the default when no flavor is specified.
During that early time, the other flavors serve to relieve the need to understand the subtleties of
referencing in using system primitives or any procedures added to the system (presumably by more

experienced programmers) for the user.

Difficulty with flavored inputs will occur if the procedure's perceived domain of applicability
overlaps intc situations where another reference mechanism is appropriate. For example, a
misunderstarding may ;'esult if a procedure’s semantic allows either name or number as an input. A
data input structure will work in typical situations; however, if the user expects to use a variable set to

4 number in place of the number, an error will result.®

3.2.4 Two Proposals for Non-Lisp structures
In this section we treat two kinds of functionalities not well served by siructures in Lisp, and

accordingly we make proposals for Boxer. The first of these functionalities is message passing.

Considar the concretely realizable process of moving to a distant environment, executing a
procedure, and returning with the result. This is the basis of message passing in Boxer. in particular,
we intend to have special syntax tuned_to this functionality, e.g. IN <environment> <do such and
such>, or TELL <environment> {whatever)>. Since Boxer has a fully deveioped environment structure,

w2 balieve syntax s all the dedicated structure message passing needs. Instances will be made by

“ante that nputs are always data object when used internally (within the inputting procadure). Passing procedures as

1,013 means hauing a procedure inside a data box. If it is to be executed, an explicit DO (meaning execute the ccntents of this

datvwex) will be needed. Qutputting precedures must proceed similarly. Scheme does not link type of object to type of
(torenne, but uses syntax for the latter. This allows one to reterence pracedures as data objects imore easily than with Boxer.

Acvanced users, of course, can change input reference mechanism with explicit markers at the place of invocation. Eval
14 Gacte are used this way in Lisp, though ideally one would preter a cleaner relationship between control and reference
miechamsms A suggestion for a transparent way to do this in some important cases is given in Section 4.

T A R N NP N : - . . . a

s

La)

PHERS gV s amtris i

g —

"

31

copying environments, and subclassing by nesting environments. (An example of subclassing
appears in the next section.) There are potentially impartant gains in having message passing
functionality in Boxer, but also some issues about how convenient and natural such facility will

actually be, which we are in the process of exploring.

The second neglected tunctionality is the construction of compound objects out of evaluated
parts. Lisp and Loge use constructor functions for this purpose, functions which evaluate their
arguments and output a compound structure constructed of the values. We consider this an
overextension of the control structure of function to an area in which it is not well adapted, at least in
the perception of novice programmers. The reason is simple. Even in Logo, spatial organization is
part of a typical user’'s model of a compound object. A list is a series of elements in a row. Why then
can one not use such an organization to specify the ‘“‘shape” of a compound object to be
constructed? In Logo if the value of :X is "A, LPUT :X [B C] produces the counter-visual result, [B C
A). Instead, one would like to write something like [B C :X]. Boxer's intent to make spatial
organization pay dividends suggests we should try to do better than Logo. Many Lisps now have a
“back-quote” structure to serve this function, and what we want for Boxer is a cleaner, better

integrated implenentation of the motivating concerns,

We are exploring two possibilities. The first we call geometric outputting. It uses the procedure
box control structure along with the image of a dereferenced data box (or the output of an executed
procedure box) leaving its value in the place where it is executed. Thu.s, a Boxer procedure will
output all values returned trom subordinate proredures or data boxes whose values are not used by
another procedure, and the geometric relationship ol those values will be preserved. The figure
below gives an example. A procedure box, none of whose subboxes return a value, itself will not

return a value. We are assuming that, like Logo, many of the buiit-in primitives don’t output.

{proc> <{data>

P e T T]

Figure 3-8: Geoimetric outputting

There are limits to the usefulness of this idea. It is tuned to “flat” structures both because it
flattens (e.g. HELLO above is “unboxed'’) and because the use of procedure-invocation control does

not allow unevaluated levels between the top-level and terminal evaluated nodes. If one wants to

I WY PN O NoA e m . — A

insert an evaluated object at a low level of the to-be-constructed object, one will have to, for example,
construct the "shape” of the object first, and then assign the computed value.Z But many simple

b
r! cases will be taken care of easily.

g Geometric outputting may pose implementation efficiency problems. A fallback position wouid be
1 to use conventional Lisp outputting (last subform supplies value), and have a new constructor type
F box which takes over the function of geometric outputting in compound data construction, but

without overhead for usual outputting situations.

L‘ 3.3 Lexical versus Dynamic Scoping
F' We have been implementing Boxer on top of a Scheme interpreter, and in general have found

Scheme a congenial implementation language for the semantics of boxes. A natural question is why

!
E doesn’'t Boxer appropriate as its dominant scoping technigue one of Scheme's distinguishing
:‘ characteristics, lexical scoping? Deciding on a scoping mechanism has been a difficult task, and the

decision process makes a good case study because, in the end, modeling considerations have been

. pivotal. Below is the case for dynamic scoping.

1. Sometimes one really wants dynamic scoping. Consider environments in the sense of
workspaces discussed earlier. If one takes a procedure to another environment, or
creates an intermediate environment between the procedure’'s environment and
UNIVERSE, it may well be exphcitly for the purpose of altering the meaning of the terms
making up the procedure delinition. The figure below shows how dynamic scoping can
be used as a mechanism to create actor-style instances. The environment TURTLE has a
set of state variables, X Y and HEADING, which are manipulated by functions FD
{(forward), RT (right turn) and LT (left turn). A turtie instance JOE is created by making a
subenvironment containing its own state variables. but it uses TURTLE's manipulator
code on these. If one wanted JOE to have a different FD behavior, a new FD could just be
added to his library, shielding TURTLE's FD. Other arguments for the usefuiness of
dynamic scoping, which are not dependent on Boxer's environment structure, are
contaired in [Steele and Sussman 78b).

2. Dynam:c sco :ng is more natural to Boxer than to non-spatially organized languages like
Schem2. This is a judgment on how the experience of using a system supports one or
anothe- model of its actions. The overt experience of a Boxer user is one of performing

27|n some cases, this "“hack" will be easier and more obvious than others. For example. one might concretely construct the

shape of the compound object once and for all in some local library, and assign the computed values to subordinate boxes as
the valuas become available.

ey

TURTLE == === == = m e o s e e e e o e e e e et e oo

| xv .

- e > A e A = e -

Figure 3-9: Sending a message to JOE, an instance of TURTLE.

operations in environments which define the meaning of those operations.28 In a Lisp

experience, environments are transitory, set up for function calls and destroyad on exit.
Though Scheme has environments as a basic fact of life, environments are hardly
concrete and manipulable in the transparent way they are in Boxer (e.g. picked up and
moved around with the editor). In Lisp worlds, it is an appropriate aesthetic to avoid
dependence on ihvisible and hard to manipulate things; functions really ought to do the
same thing on each invocation. But if “functions operating in environments” is the
tundamental, concretely represented metaphor of the system, we need worry less about
potential false expectations of modularity and problems debugging them if they occur.
To some extent the problem is also ameliorated by the fact that novices will not be
constructing extremely deep and complex programs which pose stricter modularity
problems.

3. Boxer, particularly with ports, will have most of the functionality of lexical scoping for
advanced users. Some of the important functionality of lexical scoping can be taken over
by the local library, which is copied with the procedure text to the environment of
execution. If one wishes to do some work, one can have an arbitrary amount of the
defining environment carried to the calling environment in this way. Ports can take over
more of the functionality of lexical scoping. The copy-and-execute rule that ports are
copied as ports to their original target, and the meaning of ports, that procedures viewed
in a port are executed in their original environment, imply that ports used in this way
cause precisely the effect of lexical scoping.

4. Lexical scoping simply does not have as simple a surrogate model as dynamic scoping, at
least in spatial terms. The overt signs of this are that one must distinguish the text of a
procedure from the procedure itself [Steele and Sussman 78a]. This runs directly

28lﬂ fact, it can be argued that concrete experience in Boxer, e.g. typing a command in some environment and executing it
teaches dynamic scoping. This is because in such circumstances, there is no distinction between dynamic scoping and lexical
scoping at all. One would expect users to generalize the simpler model, dynamic sceping. (Point 4 in the text above argues
that it is simpler.) ’

—y
<R

N TTyTYeTTYYY

A

counter to the principle of naive realism we have adopted for Boxer, what you see is what
you have. Procedures and containing environments are separately represented in Boxer
and need not -- probably should not -- be strongly linked in the way lexical scoping does.

Continuing the last point, consider the changes needed to the copy and execute surrogi= of
Boxer for lexical scoping. When a procedure is called, one cannot set up an environment at that
place in which to “observe' the actions of the procedure since the free variables in the procedure
refer to non-local entities, entities that exist in the environment in which the procedure was defined.
So after binding inputs (which do, in fact, come from the procedure invocation location) geographical
focus must shift to the defining environment for the execution phase. After execution, one must
return control and any resuiting value to the calling environment. The alternative to these shifts in
locus is to give up the identification of containment with “environmentness’ basic to our spatial
metaphor. Imagining or éctually watching a procedure execute would be considerably complicated
by constantly switching environments. The topology of the calling structure of a procedure stopped in
mid-stream could wind tortuously through the spatial hierarchy. Though the surrogate per se is not
iminen<ely more complex for lexical scoping, more of it is invisible and not amenable to learning by
episodes of interpreting yvhat one sees happen. How should one represent, for example, return
pointers? In the dynamic copy and execute model return pointers are unnecessary; procedures

return in place.

Of course, one may argue that it is the spatial copy and execute model which one should abandon,
not lexica! scoping. But with lexical scoping, it seems one will always be faced with representing two
hierarchies, the calling hierarchy, which shouid not be ignored, and the lexical one. Simple models

embodying both hierarchies seem hard to come by.

P P ——r———

\ e am e o

et B e~ Fa e e~ S L — T —— ——r -

4. The User Inte rface

We have taken a great deal of time explaining the computational semantic of Boxer anc very little
describing the user interface. The primary reason for this is that so much of the functionality of what
is usually called user interface has been built directly into the fundamental meaning of the system.

This seems inescapable in naive realist systems.

Beyond basic functionality, users also need to be able to tailor the interface to their own needs.
This can be done to some extent with the basic structures proposed already: via expanding and

changing the set of single keystroke commands, via port placement, and other examples to come.

Conversely, some of the functionality which one usually needs to have as part of the programming
language can be taken over by the interface. In our case one constructs procedures, and even the
global organization of the system itself, concretely with the editor rather than needing all procedure-
and structure-creating commands to be part of the language. One may wish to have procedures
created as side effects of special function calls, but that is not necessary for mecst novice

programming.

There is another pair of user interface issues worth mentioning here. Menus are extremely useful
to unsophisticated users, therefore it is important to retain some of their functionality for Boxer.
Luckily this is not hard to do. Anything the user types is a usable artifact which may be selected and
executed. We have a line oriented default for selection, compatible with the line . oriented
substructuring of boxes. So all a user will have to do to use some text as a menu will be to point at a
line and press the DOIT key. Users will undoubtedly gradually build their own menu iriterface in some
environment from what they type to try things out. Some might wish to put frequently used commands
in a box labeled MENU, and anyone who makes a sub-environment for others' use should leave such
artifacts around. The important thing is that essentially all the functionality of a menu is available

without the overhead of learning to construct or change special structures.

Boxer will have an interactive parser and prompter to aid users in constructing expressions which
do what they intend. The key is not to make such help obtrusive by burdening the user when he does
not want it, or by introducing modes and screen objects which do not behave like the normal Boxer
mode (note the singuiar!) and objects. What we have in mind is something like the following: If a user
wants help with a tunction, he types the name and presses HELP. What appears are input prompts as
boxes labeled by the mnemonic names chosen by the programmer. If defaults were given by being

written into the input box as it appears in the local library of the procedure definition, those will

[SRUERIS VS S S DL LOLELINLE WL

Al ki

PO S S

g

-

A“r v

Cac lw -

u ‘rvw—v.—,rv

T

B et macimie A0 M 2 4
‘

36

appear in the prompt boxes. One could have written additional commentary as a text box in the input
in the same way as a default value. (Remember text boxes are not executed with the code in a box.)
It is important that the prémpt boxes are not special; they can be changed in the usual way, e.¢, to

change the value which appears as a default.29

The prompt boxes have a natural meaning in the surrogate of the system. Namely, these are the
boxes which determine which kind of input is being used, value (procedure), literal (data) or port.
Aside from documenting that choice at call time, a user can change the type if his local purposes do

not match the selection made at define time.

Prompt boxes also serve to parse expressions to an arbitrary depth based on the same box
hierarchy used generally in the system. Outputting with no explicit markers allows the execution
surrogate to be imported directly to this situation without loss of any functionality. One can type, for
example, “sin X" in an input box rather than “output sin x"" as would be necessary in Logo. In short,
procedure boxes serve parsing functionality as weli as procedure, function and (possibly) data-
constructor ones. Because of this multiplicity of use we will likely have “procedure” be the default

type of box. assumed if no other type is written in.

2
In order to Leep the system modeless, one would like ta be able to create nput prompts by hand as well as using HELP

37

5. Summary

In designing an integrated computational environment the most basic heuristic is to combine
functions, i.e., to try to generate a small set of structures out of which all necessary functionality can
be built. An immediate caveat to this is shallow structuring, that common functionalities must not be
difficult to express in the fundamental structural vocabulary. But deeper and more complex revisions
to the basic heuristic are in order in view of the limiting resource in understanding and contrelling a
complex system, namely the materials and capability to construct mental models of such a system on

the part of the human user.

We have found it important to consider a few paradigmatic kinds of models to get proper purchase
on the issues of understandability and learnability. Surrogate models are ‘‘replacement machines"
which one can ‘‘run” in one's imagination to predict and understand the actual machine. These are
good for prediction and debugging. but are not typically learnable in small increments and lack the
kind of ties to functionality necescary to fluid interaction and to the invention of techniques to solve
problems posed in solution-independent terms. Functional models in which, typically, a structure is
learned as a solution to a(particu|ar problem -- ‘it does the right thing'' -- create functional ties, but
are weak in terms of completeness and context invariant application. We think it extremely important
to consider a third c]ass of models, distributed models, in which not only is there no global
mechanistic frame (surrogate) but one may not even be able to identify a single functicnal frame
which accounts for understanding and remembering in terms of a simble mapping to previously
understood situations. Instead, a number of situation-specific rationalizations, including visual
metaphors and the inheritance of “reasonableness” from frames like natural language aitogether
produce an account of some behavior of the system which makes that behavior generalizable, hence

useful as a model,

As an elaboration of these ideas we have sketched the design of a language, Boxer, aimed at being

the basis of an integrated computational environment. Boxer follows the following four principles:

- In order to minimize the need for abstract structures mediating between what one sees
and how one understands it, and in order to promote modeling on the basis of visual
rationalization, we have proposed a rather extreme form of naive realism as a guiding
principle: All screen objects are “real”” and manipulable in a uniform way. In this way
most of what is usually thought of as user interface is integral to the system.

- In order to take advantage of the character of the* o display and in ofder to link into an
important class of pre-existing knowledge users have, Boxer employs a systematic spatial
metaphor, using spatial relationships to express language semantics.

PR S VS

-Because of the strengths of the spatial metaphor and its aptness to computational
systems, we have collapsed static structures to a small core, introducing functional
multiplicity through variation of the basic object, the box, based on nearly naive
functional categories such as procedures and data. All of the functional hierarchies in
Boxer, procedure/subprocedure, hierarchical data, environment (file structure) and
scoping are organized with boxes.

- Because of the weakness of naive understanding of reference mechanisms, we have
introduced an expanded set of functionally motivated dynamic structures (flavors of
inputs, syntax for message passing, spatial construction of compound data objects). In
particular, flavored inputs allow the simulation of a broader range of naive reference
mechanisms without intrusion into the surface appearance of the language. As well, care
has been taken to maintain a visualizable surrogate model to aid understanding dynamic
aspects of the system.

What has been left out of this account of the design procass? In order to focus clearly on issues of
mental modeling we have not discussed either the consistency or completeness of Boxer as a
computational scheme.® Nor have we discussed the issue of efficient implementation or the
heuristics we used to trade off implementation against functionality and user understandability.
Naturally, we have proposed a system we think is consistent and efficiently implementable, but this

has hardly been demonstrated.

Finally, our judgments about understandability are based on our assessment of both the difficulties
and occasionally, the surprising successes of students in understanding computational systems (and
to be fair, also on our own experiences and introspection). Even granted our general ‘modeling
considerstions, we have had to make decisions about specifically what knowledge we can count on
users having and applying, e.g., what rationalizations will be made. Obviously a great deal more study
in this area needs to be done, but we do not apoloyize for trying to use and systematize what we think
we know already. There is no dispute that innovation in terms of both computational structures and
functions is important to making progress in constructing powerful and usable computational
environments. But we think it both possible and proper to begin to regard such innovations as
manifestations and 'asts of more systematic theories of design based on principles of learnability and

understandabiility.

3oWe do not mean completeness in the Turing sense, but in the sense of treating the main functionalities contemporary
aesthaetics demand in a general-purpose computational environment. Of course. these aesthetics differ widely, which is one
reason we have avoided the subject.

39

References

[Abelson and diSessa 81] *
Abelson, H. and diSessa, A. A.
Turtle Geometry: The Computer as a Medium for Exploring Mathematics.
M.L.T. Press, Cambridge, MA, 1981.

[Baeker 75]
Baeker, R.
Two Systems which Produce Animated Representations of the Execution of Computer
Programs.
ACM SIGCSE Bulietin 7(1), Feb., 1975.

[de Kleer and Brown 81]
de Kleer, J. and Brown, J. S.
Mental Models of Physical Mechanisms and their Acquisition.
In Anderson, J. R., editor, Cognitive Skills and their Acquisition. Lawrence Erlbaum, Hilisdale,
NJ, 1981.

[diSessa 82a]
diSessa, A. A.
Unlearning Aristotelian Physics: A Study of Knowledge-Based Learning.
Cognitive Science 6:37-75, 1982.

[diSessa 82b]
diSessa, A. A.
Phenomenology and the Evolution of Intuition.
In Gentner, D. and Stevens, A., editors, Mental Models. Lawrence Erlbaum, Hillsdale, NJ,
1982, :

[du Boulay et al 81)
du Boulay, B., O'Shea, T. and Monk, J.
The Black Box Inside the Glass Box: Presenting Computing Concepts to Novices.
International Journal of Man-Machine Studies 14:237-250, 1981.

[Gentner and Stevens 82]
Gentner, D. and Stevens, A., editors.
Mental Models.
Lawrence Erlbaum, Hillsdale, NJ, 1982.

[Goldberg and Robson 79]
Goldberg, A. and Robson, D. A.
A Metaphor for User interface Design.
In Proceedings of the University of Hawaii Twelfth Annual Symposium on System Sciences.
Honolulu, January, 1979,

s

Y U S |

TV T

[Goldstein and Bobrow 80]
Goldstein, . P. and Bobrow, D. G.
Extending Object-Oriented Programming in Smalitalk.

] In Proceedings of the Lisp Conference. Stanford, CA, August, 1980.
]
. [Greenblatt et al 80)
Greenblatt, R., Knight, T., Holloway, J. and Moon, D.
3 A Lisp Machine.
b ACM SIGMOD Record 10(4), March, 1980.

[Innocent 82]
Innocent, P. R.
Towards Self- Adaptive Interface Systems.
international Journal of Man-Machine Studies 16:287-299, 1982,

vy
B -

P«' [Lieberman 82] .

Liebernian, Henry.

Watching What Your Programs are Doing.

Memo 656, M. 1. T. Artificial Intelligence Laboratory, 1982.

E' [Neves 82]
X Neves. D.
Boxer Manual.)
- M.1.T. Laboratory for Computer Science, 1982.

[Rumelhart and Norman 81]
Rumelhart, D. E. and Norman, D. A.
Analogical Processes in Learning.
in Anderson, J. R., editor, Cognitive Skills and Their Acqu'sman Lawrence Erlbaum, Hillsdale,
NJ, 1981.

{Smith et al 87]
Smith. C. C., Irby. C., Kimball, R. and Verplank, B.
Designing the Star User Interface.
Byte :242-282, April, 1982,

[Steele and Sussman 78a]
Steele, G. L. and Sussman, G. J.
The Kevised Report on Scheme: A Dialect of Lisp.
Memo 452 M. 1. T. Artificial Intelligence Laboratory, January, 1978.

[Steeie and Sussman 78b)
Steeile, G.L. and Sussman, G. J.
Tne Art of the Interpreter,
Memo 453, M. |. T. Artificial Intelligence Laboratory, May, 1978.

41

[Teitelman et al 75)
Teitelman, W,, et al.
interlisp Reference Manual.
Xerox Palo Alto Research Center, Palo Alto, CA, 1975.

[Tessler 81]
Tessler, Larry.
The Smalltalk Environment.
Byte :90-147, August, 1981.

[Weinreb and Moon 82]
Weinreb, D. and Moon, D.
Lisp Machine Manual.
M.LT. Artificial Intelligence Laboratory, 1982.

[Young 81]
Young, R. M.
The Machine Inside the Machine: Users' Models of Pocket Calculators.
International Journal of Man-Machine Studies 15:51-85, 1981,

T

Y

[Young 82]
Young, R. M.
‘ Surrogates and Mappings: Two Kinds of Conceptual Models for Interactive Devices.
- In Gentner, D. and Stevens, A., editors, Mental Models. Lawrence Erlbaum, Hillsdale, NJ,

;‘ 1982.

g

T S —

e

U S N, ST S o

-

Table of Contents

1. Introduction .
2. Principles of Design

2.1 Structure and Function

2.2 Mental Models and Surrogates
2.3 Functional Models

2.4 Distributed Models

3. A Proposed Frame for Integration

3.1 Static Structures and Functions
3.1.1 The Box
3.1.2 Boxes as Procedures
3.1.3 Boxes as Data Objects
3.1.4 Boxes as Environments
3.1.5 Kinds of Boxes
3.2 Dynamic Structures and Functions
3.2.1 Reference
3.2.2 A Surrogate Model for Boxer
3.2.3 Inputs
3.2.4 Two Proposals for Non-Lisp structures
3.3 Lexical versus Dynamic Scoping

4. The User Interface
5. Summary

N B -

15

16
16
17
18
19
21
23
24

883RY

35
37

A Ag

DR e

" el

N 7~ Ik

Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:

Figure 3-8:
Figure 3-9:

List of Figures

A box with contained boxes.

A box represents a procedure.

The local library contains definitions generally useful in the box.

A vector with labeled subparts.

Box structure can organize the whole computational environment.

A data box marks literal reference.

Ports provide access to other environments for dynamic purposes such as
setting a variable. Here the expression MAKE A 5 resides in PLACE2, but is
visible (and could be executed from) PLACET1.

Geometric outputting
Sending a message to JOE, an instance of TURTLE.

16
17
18
19

- RN R

31

